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ABSTRACT: A series of experiments were carried out on
the parison formation stage in extrusion blow molding of
high-density polyethylene (HDPE) under different die tem-
perature, extrusion flow rate, and parison length. The drop
time of parison when it reached a given length and its
swells, including the diameter, thickness, and area swells,
were determined by analyzing its video images. Two back-
propagation (BP) artificial neural network models, one for
predicting the length evolution of parison with its drop time,
the other predicting the swells along the parison, were con-
structed based on the experimental data. Some modifica-
tions to the original BP algorithm were carried out to speed

it up. The comparison of the predicted parison swells using
the trained BP network models with the experimentally
determined ones showed quite a good agreement between
the two. The sum of squared error for the predictions is
within 0.001. The prediction of the parison diameter and
thickness distributions can be made online at any parison
length or any parison drop time within a given range using
the trained models. The predicted parison swells were ana-
lyzed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96:
2230–2239, 2005
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INTRODUCTION

Blow molding represents the third largest plastics pro-
cessing technique worldwide for manufacturing many
different products in the plastics industry, accounting
for 10 wt % of all plastics. It is also one of the fastest
growing industries worldwide.1 Extrusion blow mold-
ing is a major blow molding category, with a product
range from packaging containers to industrial com-
plex parts such as those supplied to the automobile,
office automation equipment, and pharmaceutical sec-
tors, etc. It has a number of technical and economical
advantages concerning the low-pressure characteristic
of the process and the facility to produce complex-
shaped parts with very thin walls.

The extrusion blow molding process consists of
three main stages, namely, parison formation, parison
inflation, and part cooling and solidification. Parison
formation is a critical stage. It is also rather complex in
that the parison dimensions, including the diameter

and thickness, are affected by two phenomena known
as swell and sag. The parison swell, occurring both in
diameter and thickness, is due to the nonlinear vis-
coelastic deformation imposed on the polymer melt
during its flow in the extrusion die. The degree of
swell is dependent on materials characteristics and
processing parameters. In general, anything that in-
creases the elastic response of the melt will lead to
greater swell. The geometry of the flow channel within
the die has a strong effect on the swell. Sag, or draw-
down, results from the tensile stress generated by
gravity acting on the parison while it hangs from the
die. A polymer with a lower molecular weight exhibits
a great degree of sag. Increasing the melt temperature,
suspension time, and/or total parison length also re-
sults in a great degree of sag.

The parison dimensions just prior to inflation are
critical to the inflation stage, since these dimensions
constitute the starting point of the inflation stage and
directly influence the final part dimension distribu-
tion.2 Blow molded parts must meet strict dimension
distribution requirements to provide the necessary
strength and rigidity with minimum material usage.
So it is critical to be able to predict the parison dimen-
sions.

There is considerable effort in modeling the parison
formation stage to predict the parison dimensions.
Two approaches can be identified: semiempirical ap-
proaches3–5 and numerical simulation methods. By
using numerical methods, the polymer melt is consid-
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ered as a Newtonian fluid6–8 or a non-Newtonian
fluid. For the latter, two types of constitutive models,
differential9–12 and integral equations,2,13–17 are used.

Numerical simulations on the parison formation
help minimize machine setup times and tooling costs,
as well as optimizing processing parameters to yield
desired final part specifications. However, the follow-
ing shortcomings should be taken into account:

1. Simulations generally require many simplify-
ing assumptions, thereby resulting in a limited
accuracy of simulation results.

2. A constitutive equation must be used. Clearly,
reliable constitutive equations for adequately
describing the nonlinear viscoelastic behavior
of the polymer melt during extrusion are still
lacking. Otsuki et al.15 carried out numerical
simulations of parison swells extruded through
straight, divergent, and convergent dies. Sev-
eral important viscoelastic models, the K-BKZ,
the PTT, and the Larson models, which can
express well the shear flow characteristics of
high-density polyethylene (HDPE), were used.
Their studies demonstrated that there are re-
markable differences among the results of these
viscoelastic models. Furthermore, there are
some difficulties in obtaining relevant rheologi-
cal data for constitutive equations.

3. There are some limitations and complications.
Numerical simulations have no ability to han-
dle effects of parison programming (time de-
pendent gap variation), coupled effects of sag,
and the prediction of swell at higher shear rate
levels of industrial blow molding machines.16

In addition, because of the complexity of the
equations involved, these simulations are quite
time consuming.

Artificial neural networks (ANNs) are mathematical
models developed to mimic certain information stor-

ing and processing capabilities of the brain of higher
animals. ANNs have been applied widely to various
areas. The advantages of employing ANNs over sim-
ulations based on numerical techniques include:

1. No or a minimal number of simplifying as-
sumptions.

2. No need for constitutive equations, and thus no
need for difficult-to-obtain rheological data.

3. Online prediction for process monitoring and
control.

4. Faster response.

DiRaddo and Garcia-Rejon18,19 utilized the neural
network method to predict final part dimensions from
initial parison dimensions and initial parison dimen-
sions from the specified final part thickness, respec-
tively. Huang and Liao20,21 utilized the neural net-
work method to predict swells of the parison under
the effect of sag in the extrusion blow molding of
HDPE and HDPE/polyamide-6 (PA-6) blends. It was
demonstrated that the neural network model can pre-
dict the parison swells with a high degree of precision.
The prediction, however, could be made only on the
parison with a specified length because the parison
length was set at a fixed value. The target in this work
is to predict the dimension distributions of the parison
at any length or any drop time during its formation
process using the neural network method.

A back-propagation (BP) neural network, selected
in this work, is successfully used in many fields. How-
ever, it has been realized that the original BP algo-
rithm is too slow for most practical applications, and
many modifications have been suggested to speed it
up.22–24 So another aim of this work is to carry out
some modifications to the original BP algorithm to
speed it up.

EXPERIMENTAL

The material used is an HDPE 5300B manufactured by
Petrochina Daqing Petrochemical Co. This HDPE is an
extrusion blow molding grade resin with a melt index
of 0.41 g/10 min and a solid density of 0.952 g/cm3.

Figure 1 Parison die used in the experiments. All dimen-
sions are in mm.

Figure 2 Typical BP neural network with three layers.
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An extrusion blow molding machine with a screw
diameter of 45 mm and a length-diameter-ratio of 25 :
1 was used. The annular die used to extrude the
parison was a straight one, shown in Figure 1, with an
outer diameter of 25 mm and a lip gap of 2 mm. A
video capture system was employed to access the
images of the parison online. The capture system
mainly includes a color video camera and a video
capture card. The former is mounted perpendicular to
the axis of the parison, and the latter is installed in a
personal computer. The analog signal from the former
is sent to the latter, which digitizes and compresses
the video images in one step, directly onto the hard
disk of the computer.

During the extrusion of the parison, ink marks were
put on its outer surface just below the die exit at the
same time interval. To predict the dimensions of the
parison during its formation using the neural network
method, images with five different parison lengths,
100, 150, 200, 250, and 300 mm, respectively, were
captured. Twenty marks were put on the parison with
different lengths.

By analyzing the digitized video images of the pari-
son, the outer diameter (Dp) corresponding to each ink
mark and the distance (�l) between two adjacent ink
marks could be determined. Next, the thickness (Hp)
for each parison segment, assuming cylindrical sym-

metry, could be calculated on the basis of mass con-
servation25:

Hp �
Dp

2 � ��Dp

2 � 2

�
Q�t
���l (1)

where Q is the extrusion flow rate, (�t) the time be-
tween two adjacent ink marks, and � the melt density
of the material used. Then the diameter, thickness, and
area swells, denoted by SD, SH, and SA, respectively,
could be calculated. Among them, SA was calculated
by:

SA � SDSH (2)

The corresponding time when the parison reached
each length could be determined by analyzing the
images. For each parison length, three different die
temperatures, 170, 200, and 230°C, and four different
extrusion flow rates, 4.8, 10.3, 15.2, and 17.1 kg/h,
were employed. Thus, 60 (5 � 3 � 4) sets of data, that
is, 60 sets of the drop time of the parison and its
diameter, thickness, and area swell values, with dif-
ferent length extruded at different processing param-
eters, were obtained.

Figure 3 Schematic of BP neural network architecture used in this work.

TABLE I
Drop Time of the Parison with Different Lengths under Various Processing Conditions

Parison
length
(mm)

Parison drop time (s)

4.8a 10.3 15.2 17.1

170b 200 230 170 200 230 170 200 230 170 200 230

100 13.5 13.0 12.6 6.8 6.4 6.1 4.8 4.6 4.4 4.2 4.0 3.9
150 22.7 21.1 19.5 11.9 11.0 10.2 8.6 8.1 7.7 7.7 7.2 6.8
200 29.7 27.3 25.2 15.5 14.2 13.1 11.3 10.6 10.1 10.0 9.4 9.0
250 36.5 32.9 31.2 18.7 17.3 16.0 13.8 13.1 12.3 12.7 11.6 11.2
300 41.9 39.1 36.7 21.8 20.0 18.8 16.4 15.5 14.4 14.9 13.8 13.3

a Flow rate (kg/h);
b Die temperature (°C).
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NEURAL NETWORK DESIGNING AND
TRAINING

Determination of the network architecture

The BP network, used in this study, has hierarchical
feed forward network architecture constituted by a
highly interconnected set of processing units, called
neurons, which are arranged in a layered structure. It
has been shown that one hidden layer BP network
with “sufficient” processing elements can approxi-
mate any function to an arbitrary precision. So a BP
network (shown in Fig. 2) with three layers, namely,
input layer, hidden layer, and output layer, was used
in this work. The input layer receives and distributes
the input pattern, the hidden layer captures the non-
linearities of the input–output relationship, and the
output layer produces the output pattern. An input
vector, X � (x1, x2,. . . ,xi,. . . ,xn)T, is applied to the
input layer of the network. The output of the ith
neuron in the input layer is its input xi. Then for the
hidden layer:

netj � �
i�1

n

wij xi � �j (3)

yj � f�netj� (4)

where netj is the net input to the jth neuron in the
hidden layer and yj is its output, wij is the connection
weight from the ith input unit to the jth neuron in the
hidden layer, and Qj is the threshold value of the jth
neuron.

For the output layer:

netk � �
j�1

m

wjk yk � �k (5)

ok � f�netk� (6)

where netk is the net input to the kth neuron in the
output layer and ok is its output, wjk is the connection
weight from the jth input unit to the kth neuron in the
output layer, and Qk is the threshold value of the kth
neuron.

The function f(x) in eqs. (4) and (6) is the transfer
function. Here the sigmoid transfer function was used:

f�x� �
1

1 � e�x (7)

Two BP network models with three layers, shown in
Figure 3, were constructed in this work. The number
of neurons in the input layer and the output layer was
determined according to the parameters involved in
the problem investigated. For network Model 1, the
number of neurons in the input layer and the output
layer is 3 and 1, respectively. The 3 input parameters
are the parison drop time (t) from the start of extru-
sion, die temperature (T), and extrusion flow rate (Q),
respectively. The 1 output parameter is the parison
length (L) corresponding to the time of t. For Model 2,
the number of neurons in the input layer and the
output layer is 3 and 20, respectively. The 3 input
parameters are L, T, and Q, respectively. The 20 output
parameters are the predicted diameter, thickness, or
area swells of 20 points along the parison during its
formation process.

There is not yet theoretical guidance to the determi-
nation of the number of neurons in the hidden layer.
Here it was determined through experimentation.
Four and 16 hidden neurons were finally selected for
network Models 1 and 2, respectively.

Figure 5 Relationship between network Models 1 and 2.

TABLE II
Sum of Squared Error (SSE) for the Parison Swells Predicted from Network Model 2

Network inputs SSE (� 10�3)

Die temperature
(°C)

Flow rate
(kg/h)

Parison length
(mm)

Diameter
swell

Thickness
swell

Area
swell

170 10.3 200 0.82053 0.90173 0.92354
170 17.1 300 0.50024 0.66183 0.77301
200 4.8 100 0.31926 0.42738 0.43398
200 15.2 250 0.48325 0.75859 0.77239
230 4.8 300 0.93171 0.98248 0.99854
230 15.2 150 0.48663 0.58862 0.74293
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Network training and testing

As mentioned in the Experimental section, 60 data sets
were obtained from experiments by changing the die
temperature, extrusion flow rate, and parison length
(i.e., parison drop time) for each network model. For
Model 1, 55 among the 60 data sets were used as
training patterns to train the neural network to ascer-
tain its weight and threshold values. The remaining 5
data sets were used as testing patterns to test the
trained neural network to verify the model. For Model
2, 54 data sets were used as training patterns, and the
remaining 6 data sets were used as testing patterns.

It is usually necessary to preprocess the data before
presenting the patterns to the BP network, because the
sigmoid transfer function [see eq. (7)] modulates the
output of each neuron to values between 0 and 1. Here
the following normalization procedure was used:

V� �
V � Vmin

Vmax � Vmin
� 0.8 � 0.1 (8)

where V is the original data, Vmin and Vmax the min-
imum and maximum values of V, respectively, and V�
the normalized data of the corresponding V. Thus,
each value V is scaled to its normalized value, V�,
between 0.1 and 0.9.

Initial weight and threshold values were chosen
randomly between 0 and 1. A modified BP learning
algorithm, with a momentum term and a self-adaptive
learning rate coefficient was utilized. The momentum
coefficient was set at 0.8, and the initial learning rate
coefficient was set at 0.01; the values of 1.1 and 0.7 for
the learning rate coefficient increasing factor and for
the learning rate coefficient decreasing factor, respec-
tively, were used. The learning rate coefficient was
continuously modified during training.

The networks were trained by repeatedly accessing
the entire set of training patterns that incorporated the
coupled effects of the die temperature, flow rate, and
parison drop time (i.e., parison length). The network
gradually “learned” the input–output relationship of
interest by adjusting the weights to minimize the error
between the actual and predicted output patterns of
the training set. Once the sum of squared error for the
training patterns reduced within a given tolerance (set
at 0.001 in this study), or the number of training iter-
ations reached a predetermined one (set at 50,000 in
this study), the network training course was stopped.

Finally, the trained networks were tested through
several sets of input data, different from those used in
the training stage, to examine the validity of the mod-
els in predicting the outputs.

RESULTS AND DISCUSSION

During the formation of the parison, its profiles were
captured continuously using the visualization tech-
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nique. By analyzing the video images of the parison
extruding at different processing parameters and pari-
son lengths, the drop time when it reached a given
length and its diameter swell were determined. Then
the parison thickness and area swells were calculated
on the basis of the diameter swell. Table I shows the
drop time of the parison with different lengths under
various processing conditions. Some results of the
parison swells, including the diameter, thickness, and
area swells, are shown in Figure 4.

As mentioned above, the neural networks were
trained by accessing a pool of training data sets. As
shown in Figure 5, after being trained, Model 1 ascer-
tains the quantitative relationship between the parison
length and the parison drop time, die temperature,
and flow rate, that is, L � F(t,T,Q); and Model 2
ascertains the quantitative relationship between the
parison swells and the parison length, die tempera-
ture, and flow rate, that is, Si � G(L,T,Q),(i � D,H,A).
Then, combining both models, the quantitative rela-
tionship between the parison swells and the parison
drop time, die temperature, and flow rate, that is, Si �
f(t,Q,T),(i � D,H,A), was established. This means that
the swells can be predicted at any time within a given
range during the parison formation process.

After testing the trained network, the error between
the predicted output value from the network model
and the experimental value could be obtained. The
trained neural network Model 1 shows a high degree
of prediction precision (the relative error between pre-
dicted parison length from Model 1 and the experi-
mentally determined one is less than 0.01). Table II
gives the sum of the squared error (SSE) for the pari-
son swells predicted from Model 2. As can be seen, the
SSE for the thickness swell is slightly larger than that
for the diameter swell. The area swell has the largest
SSE among the three kinds of swells. This may be
attributed to the fact that the thickness swell was
calculated indirectly from the measured diameter
swell, and the area swell was calculated indirectly
from the measured diameter swell and the calculated
thickness swell. However, no matter for the diameter
swell, the thickness swell, or the area swell, the SSE is
very small (less than 0.001), that is, the trained neural
network model shows a high degree of prediction
precision. The comparison between the predicted pari-
son swells from the trained network Model 2 and the
corresponding experimental results is also shown in
Figure 6. It can be clearly observed that quite a good
agreement is obtained between the two.

Once trained and tested, the neural network models
have been identified and can be used to predict the
outputs expected for new levels of input variables.
Thus, the parison lengths and swells, including diam-
eter, thickness, and area swells, under the effect of sag,
can be predicted from processing parameters resorting
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to the network models, thereby reducing the amount
of experimental work.

Some results of the swell prediction of the parison
with different lengths by the network models are
shown in Figure 7. As can be seen, the swells at the
same distance from the die exit decrease gradually
with increasing the parison length. This is caused by
weight that acts on the suspended parison. Moreover,
the swells at the extreme bottom of the parison first
increase with the parison length. After the parison
length exceeds a certain value (about 100 � 150 mm),
the swells at the bottom tend to plateau values, that is,
the ultimate swells. This is because no weight acts on
the parison bottom and so the swells at the bottom are
mainly affected by the viscoelastic recovery, which
has completed after the parison reaches a long enough
length.

Figures 8 and 9 illustrate the parison diameter,
thickness, and area swells predicted by the network
models at six different flow rates and four different die
temperatures, respectively. As expected, swells in-
crease as the flow rate increases or the melt tempera-
ture decreases.

The above predictions were carried out using net-
work Model 2. As mentioned above, combining neural
Models 1 and 2, the parison swells can be predicted at
any time during the parison formation. Figure 10
shows the parison profiles predicted from combining
the two models at different times. As can be seen,
there is a sharp increase for the diameter and thickness
of the parison near the die exit. Then the dimensions
tend to decrease with time under the action of sag.

The predictions mentioned above can be made on-
line for the purposes of process monitoring and con-
trol.
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CONCLUSIONS

Two back-propagation (BP) neural network models
have been constructed based on experimental data for
the parison formation in extrusion blow molding of
high-density polyethylene (HDPE). The length evolu-
tion of the parison with its drop time can be predicted
at different processing conditions using Model 1. The
parison swells, including the diameter, thickness, and
area swells, can be predicted from Model 2 for differ-
ent parison length. Combining these two BP network
models, the swells can be predicted at any time within
a given range during the parison formation process
with a high degree of precision.

This work also carried out some modifications to the
original BP algorithm to speed it up.
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